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Abstract

A numerical study is made on the fully developed bifurcation structure and stability of the forced convection in a

curved duct of square cross-section (Dean problem). In addition to the extension of three known solution branches to

the high Dean number region, three new asymmetric solution branches are found from three symmetry-breaking

bifurcation points on the isolated symmetric branch. The flows on these new branches are either an asymmetric two-cell

state or an asymmetric seven-cell structure. The linear stability of multiple solutions are conclusively determined by

solving the eigenvalue system for all eigenvalues. Only two-cell flows on the primary symmetric branch and on the part

of isolated symmetric branch are linearly stable. The symmetric six-cell flow is also linearly unstable to asymmetric

disturbances although it was ascertained to be stable to symmetric disturbances in the literature. The linear stability is

observed to change along some solution branch even without passing any bifurcation or limit points. Furthermore,

dynamic responses of the multiple solutions to finite random disturbances are also examined by the direct transient

computation. It is found that possible physically realizable fully developed flows evolve, as the Dean number increases,

from a stable steady two-cell state at lower Dean number to a temporal periodic oscillation state, another stable steady

two-cell state, a temporal intermittent oscillation, and a chaotic temporal oscillation. Among them, three temporal

oscillation states have not been reported in the literature. A temporal periodic oscillation between symmetric/asym-

metric two-cell flows and symmetric/asymmetric four-cell flows are found in the range where there are no stable steady

fully developed solutions. The symmetry-breaking point on the primary solution branch is determined to be a sub-

critical Hopf point by the transient computation.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

As the first part of the work on the multiplicity and

stability of combined free and forced convection in

rotating curved ducts, the present contribution addresses

the fully developed bifurcation structure and stability of

the forced convection in a stationary curved duct of

square cross-section (Dean problem) [1]. The flow

geometry is illustrated in Fig. 1 with (R, Z, /) as the

radial, spanwise and streamwise directions, respectively.

A viscous fluid is driven by a streamwise pressure gra-
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dient to flow through a square duct with a streamwise

curvature and an uniform wall heat flux. Such flows and

transport phenomena have been, and still are, the object

of intense investigations, due to its intrinsic interest, as

well as its relevance to a host of areas involving curved

passages and surfaces. The readers are referred to [2–5]

for some comprehensive and outstanding reviews of the

Dean problem. For our purposes, we focus our brief

literature review mainly on flow bifurcation and stability

of fully developed solutions in curved ducts of square

cross-section with increasing Dean numbers. The Dean

number De is the dynamical parameter of the problem

and is defined by De ¼ Re
ffiffiffi
r

p
. Here Re is the Reynolds

number. r is the curvature ratio defined by a=Rc, the

ratio of duct width a over the radius of curvature Rc

(Fig. 1).
ed.
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Nomenclature

a duct width

c1 streamwise pressure gradient

c2 streamwise temperature gradient

De Dean number; Re
ffiffiffi
r

p

Dk pseudo-Dean number

p dimensionless pseudo-pressure

P pseudo-pressure

Pr Prandtl number

r; z dimensionless coordinates; r ¼ R=a, z ¼ Z=a
R, Z, / coordinates

Rc curvature radius

Re Reynolds number; Wma=m
t time

T fluid temperature

Tw wall temperature

u, v, w dimensionless velocity components

U , V , W velocity components in directions of R, Z
and /, respectively

W1 representative streamwise velocity

Wm streamwise mean velocity

Greek symbols

a fluid thermal diffusivity

l fluid dynamic viscosity

m fluid kinematic viscosity

w stream function

q fluid density

r curvature ratio; a=Rc

s dimensionless time

h dimensionless temperature

DT representative temperature difference

Rc

a

aφ

Z

R

Pressure-driven
main flow

O

Upper Wall 

Lower Wall 

In
ne

r 
 W

al
l

O
ut

er
 W

al
l

Centrifugal  force
'O

'Z

Fig. 1. Physical problem and coordinate system.
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Existence of upper and lower walls induces pressure

gradients along the walls, which manifest themselves as

one pair of counter-rotating vortices on the cross plane

[6,7]. These vortices are called the Ekman vortices in

literature and are present for any non-zero value of

Dean number. As a consequence, the fully developed

flow in a curved square duct is a symmetric two-cell state

at lower Dean numbers. As the Dean number increases,

this two-cell flow loses its stability due to a centrifugal

instability (also called Dean instability in literature) [8].

As explained in [9], in the region near the central outer

wall, the pressure gradient across the duct in the radial

direction is positive but the centrifugal force decreases

from a maximum value to zero at the outer wall. The
instability due to the imbalance between the inward

pressure gradient and the outward centrifugal force

generates an unstable region. Cheng and Akiyama [10]

first reported, by their numerical study of loosely coiled

ducts of rectangular cross-section, that this instability

manifests itself in form of a secondary pair of counter-

rotating vortices near the central outer wall. The fully

developed flow in a square duct is thus a four-cell state

in which the secondary pair of vortices near the central

outer wall are named as the Dean vortices. This four-cell

flow was further detailed numerically in [9,11,12], and

was confirmed experimentally in [13,14]. The critical

Dean number for the switch from the two-cell pattern to

the four-cell pattern was found to be about 118 in [9,13],
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while it was reported to be about 100 for square ducts in

[12]. The difference regarding this critical value indicates

the existence of a range of Dean numbers where two-

and four-cell solutions co-exist.

Such co-existence of two- and four-cell solutions was

described in [15]. Masliyah [16] established this co-exis-

tence both numerically and experimentally for the fully

developed flow in a curved duct of semicircular cross-

section with a flat outer wall. Numerical studies in [17–

20] also found dual solutions for fully developed flow in

a curved duct of square cross-section.

Detailed bifurcation structure and linear stability of

solutions for steady fully developed flows in a curved

duct of square cross-section was determined numerically

by Winters [19]. Three solution branches were found.

For a loosely coiled duct with r ¼ 0:04, the primary

branch starts at low Dean number as a symmetric (w.r.t.

the horizontal central plane) two-cell flow state (two

large counter-rotating Ekman vortices), and develops as

increasing Dean number to a symmetric four-cell flow

(two large Ekman vortices and two small Dean vortices

near the center of the outer wall) through two limit

points at De ¼ 131 and De ¼ 113. Between these two

limit points, two-cell and four-cell solutions co-exist.

The linear stability analysis in [19] determined that the

two-cell flow is stable and the four-cell flow is unstable

with respect to asymmetric disturbances. Bara et al. [21]

experimentally confirmed, using a curved duct of 270�
and constant curvature ratio of 0.0662, the solution

structure up to De ¼ 150, including the dual solution

region. They observed the symmetric flow although it is

unstable because the asymmetric disturbances in their

apparatus were small or the flow had not reached the

fully developed state in their 270� curved duct.

The second branch found in [19] is a pair of asym-

metric solutions. This branch has two pairs of limit

points and arises from a symmetry-breaking bifurcation

point at De ¼ 130 on the primary branch. The flow,

consisting of two asymmetric Ekman vortices, is unsta-

ble. The third branch is an isolated branch of two-cell

and four-cell flows above De ¼ 191. Winters [19] deter-

mined that the isolated symmetric four-cell sub-branch

is unstable while the isolated two-cell sub-branch is

stable. The location of limit and bifurcation points does

not change much for curvature ratios less than 0.2, but

at higher curvature ratios (tighter coil), they move to

higher Dean numbers.

Therefore, no stable steady fully developed solutions

exist between De ¼ 131 and De ¼ 191. This raises the

question of what are the physically realizable solutions

in this region. Clearly, the flows must develop steady

spatial (streamwise) oscillations or fully developed

temporal oscillations, or even some combination of the

two. Experimentally, both oscillations were observed

between symmetric/asymmetric two-cell flows and sym-

metric/asymmetric four-cell flows for Dean number up
to 269 [21–27]. The co-existence of both kinds of oscil-

lations could be the result of development of different

disturbances in the experimental apparatus. Sankar

et al. [28] predicted steady spatial oscillations at Dean

number above 128 numerically by using a parabolized

version of steady, three-dimensional Navier–Stokes

equations. However, there is no known study on pre-

diction of fully developed temporal oscillations and how

such oscillations relate to the solution structure outlined

above. This partly motivates the present study to predict

the temporal oscillations and find their relation with the

solution structure.

It is noted that the upper limit of oscillating flow

region is higher than predicted in [19] (at De ¼ 191).

This leads to the question of whether the isolated two-

cell branch is stable near the limit point of De ¼ 191.

The stability indicator used in [19] was the sign of

Jacobian determinant which equals ð�1Þn, where n is the

number of negative eigenvalues of the Jacobian matrix.

A negative value of this indicator indicates instability,

but a positive value is insufficient to indicate stability

[19]. Therefore, the linear stability of solutions with a

positive Jacobian determinant, including the isolated

two-cell branch, has not been conclusively determined.

Furthermore, the branch stability is often determined by

the stability of one point on the branch. This is partly due

to the fact that the computation of the complete eigen-

value spectrum along solution branches is a computa-

tionally expensive process and partly due to the

assumption prevalent in the literature that the linear

stability of solutions along a solution branch is un-

changed without passing limit/bifurcation points. How-

ever, based on the bifurcation and stability theory, such a

change in stability is possible [29]. Therefore, a more

detailed and careful linear stability analysis is desirable

to conclusively determine the linear stability of multiple

solutions. This also partly stimulates the present study.

Daskopoulos and Lenhoff [20] extended the work by

Winters [19] to a higher Dean number. While no new

solution branches were detected, four limit points on the

isolated two-cell branch were found as the Dean number

increased. Some of these points lead to solutions with six

or eight vortices. Note that Daskopoulos and Lenhoff

[20] have imposed a symmetry condition on the hori-

zontal central plane. Thus questions concerning asym-

metric solutions, their stability and symmetry-breaking

bifurcations have been left unanswered. This forms an-

other motivation behind the present study.

While the linear stability analysis is efficient in terms

of the computation efforts required, it suffers two fun-

damental defects. First, it is not applicable to a finite

disturbance. With a finite disturbance, a stable solution

based on the linear stability may not be always stable.

Second, it provides no answer to questions related to the

dynamic behavior of the solutions, including how flows

approach a stable solution after a disturbance, what
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happens to an unstable solution after a disturbance,

whether all unstable solutions at a given set of para-

meters respond disturbances in the same way, and

whether the disturbances lead an unstable solution to

the stable one at the same parameter value. Clearly, a

fully transient computation is necessary to examine dy-

namic responses of the multiple solutions to finite ran-

dom disturbances. This forms another motivation

behind the present work.

The bifurcation and stability of the multiple solutions

available in literature are limited to low Dean numbers

(less than 250). However, solutions and their stability

at high Dean numbers are more relevant for practical

applications. Upon increasing the Dean number, a ri-

cher bifurcation structure and a more intricate stability

feature are expected because of a stronger nonlinearity

of the problem. New limit/bifurcation points and solu-

tion branches are expected. Because of the lack of

the solution structure at high Dean numbers, there is a

long-standing controversy over such solutions obtained

by different methods that aimed at obtaining a solu-

tion without considering the multiplicity. To resolve

this controversy, we need to find the bifurcation struc-

ture at high Dean numbers. Furthermore, it is also

reasonable on the physical ground to expect phenomena

related to the transition to the turbulence at high

Dean numbers such as oscillation solutions, periodic

doubling, intermittency, and chaotic oscillation. This

also stimulates the present work to extend the previous

works to a range with higher Dean numbers and to

examine dynamic responses of the multiple solutions to

finite random disturbances by the direct transient com-

putation.

The present work is a relatively comprehensive study

on the bifurcation structure and stability of multiple

solutions for the laminar forced convection in a curved

duct of square cross-section (Fig. 1). The governing

differential equations in primitive variables and in

stream function and vorticity are solved for detailed

bifurcation structure by a finite-volume/Euler–Newton

continuation method with the help of the bifurcation

test function, the branch switching technique and the

parameterization of arc-length or local variable. Tran-

sient calculation is made to examine in detail the re-

sponse of every solution family to finite random

disturbances. Eigenvalue systems are solved for all ei-

genvalues by QR decomposition method to conclusively

determine the linear stability of the multiple solutions.

The Hopf bifurcation can also be detected by the tran-

sient computation and by the appearance of a pair of

pure imaginary conjugated eigenvalues in the linear

stability analysis. The power spectra are constructed by

the Fourier transformation of temporal oscillation

solutions to confirm the chaotic flow at large Dean

numbers. We restrict ourself to the hydrodynamically

and thermally fully developed region and two-dimen-
sional disturbances. So far, a detailed 3D numerical

computation of flow bifurcation and stability is still too

costly to conduct. A 2D model is still useful for a fun-

damental understanding of curved duct flows. However,

our assumption of fully developed flow limits our anal-

ysis to the one preserving the streamwise symmetry.

There may be further bifurcation to flows that breaks

this symmetry and that cannot be found in the present

work.

In addition to the three solution branches in [19,20],

three new asymmetric branches are found from three

symmetry-breaking bifurcation points on the isolated

symmetric branch. Only symmetric two-cell flows on

the primary branch and on some part of isolated two-

cell branch are linearly stable. The linear stability of

the isolated two-cell branch changes along the branch.

In the range where there is no stable steady fully

developed solution, flows develop into a temporal

periodic oscillation state between symmetric/asymmet-

ric two-cell flows and symmetric/asymmetric four-cell

flows. As the Dean number increases in the region

studied in present work, possible physically realizable

fully developed flows evolute from a stable steady two-

cell state at lower Dean number to a temporal periodic

oscillation state, another stable steady two-cell state, an

intermittent oscillation, and a chaotic state. Among

them, three temporal oscillation states have not been

reported in the literature. Furthermore, the intermittency

is found to lead curved duct flows to chaos. The temporal

periodic oscillation serves as, on the other hand, the

transition from one stable steady flow to another.
2. Governing parameters and numerical algorithm

Consideration is given to a hydrodynamically and

thermally fully developed laminar flow of viscous fluid in

a curved square duct under the thermal boundary con-

ditions of uniform wall heat flux and peripherally uni-

form wall temperature at any streamwise position (Fig.

1). The geometry is toroidal and hence the finite pitch

effect is not considered. Properties of the fluid, the

density in particular, are taken to be constant. There-

fore, a gravity potential can be introduced for the purely

hydrostatic effect of gravity.

Consider an toroidal coordinate system (R, Z, /) as
shown in Fig. 1. Let U , V and W be velocity components

in directions of R, Z and / respectively, t the time, and T ,
Tw the temperature of the fluid and the wall. Continuity,

Navier–Stokes and energy equations governing the fully

developed laminar flow and heat transfer are given, in

terms of dimensionless variables, as [10,30,31]:

Continuity equation

o

or
f½1þ rðr � 0:5Þ	ug þ o

oz
f½1þ rðr � 0:5Þ	vg ¼ 0: ð1Þ
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Momentum equations
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Energy equation

oh
os

þ u
oh
or

þ v
oh
oz

� 4wDk
rPr½1þ rðr � 0:5Þ	

¼ 1

Pr
o2h
or2

�
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�
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The dimensionless variables are defined as:

r ¼ R
a
; z ¼ Z

a
; s ¼ t

m=a2
;

u ¼ aU
m

; v ¼ aV
m
; w ¼ W

W1

;

p ¼ P

qðm=aÞ2
; h ¼ Tw � T

DT
;

where m and q are the kinematic viscosity and the density

of the fluid, a is the duct radial dimension, P is a pseudo-

pressure, a combination of fluid pressure and the gravity

potential, W1 and DT are the representative streamwise

velocity and temperature difference, respectively, which

are defined as

W1 ¼
a2c1
l

; DT ¼ Prac2:

Here l is the viscosity of the fluid, Pr the Prandtl

number, c1 the streamwise pressure gradient which is a

positive constant for hydrodynamically fully developed

flow (c1 ¼ � oP
Rco/

with Rc as the curvature radius, [30]), c2
the streamwise temperature gradient which is a constant

for the thermally fully developed flow, but can be posi-

tive or negative depending on heating or cooling of the

fluid (c2 ¼ oT
Rco/

, [30,32,33]).
Three dimensionless parameters are defined as:

r ¼ a
Rc

; Pr ¼ m
a
; Dk ¼ raW1

4m
;

with a as the thermal diffusivity. The dimensionless

groups adopted here are those in [30,31]. The curvature

ratio r is a geometry parameter, representing the degree

of curvature. The Prandtl number Pr, a thermophysical

property parameter, represents the ratio of momentum

diffusion rate to that of thermal diffusion. Dk is a

pseudo-Dean number with W1 as the characteristic

velocity, representing the ratio of the square root of the

product of inertial and centrifugal forces to the viscous

force [30,31]. It characterizes the effect of inertial and

centrifugal forces. Among the three parameters, the

curvature ratio r is a more detailed measure of the effect

of geometry and the extent to which the centrifugal force

varies on the cross-section. Winters [19] found that it

does not contribute to the structural change of bifur-

cation while higher curvature ratios (larger than 0.2)

shift limit and bifurcation points to higher Dean num-

bers. This is consistent with the Dean’s theoretical

finding that the Dean problem is governed by the Dean

number alone for the loosely coiled ducts [2,5]. There-

fore, we fix its value at 0.02, typically used in cooling

systems of rotor drums and conductors of electrical

generators. While the Prandtl number Pr affects the

temperature field, it has no effect on flows because the

flow field is decoupled with the temperature field for

the forced convection. In the present work, we set the Pr
at 0.7, a typical value for air.

Boundary conditions (non-slip, impermeability and

uniform peripheral temperature) may be written, in

terms of dimensionless variables, as

u ¼ v ¼ w ¼ h ¼ 0

at r ¼ 0; 1 for � 0:56 z6 0:5 ð6Þ

u ¼ v ¼ w ¼ h ¼ 0

at z ¼ �0:5; 0:5 for 06 r6 1 ð7Þ

The formulation of the problem is on full flow domain

without imposing symmetric boundary conditions to

perform a thorough numerical simulation.

The details of numerical algorithms are available in

[34]. For steady bifurcation structure, the governing

differential equations without the time-dependent terms

are discretized by the finite volume method to obtain

discretization equations. The method is an adaptation of

that in [31,35]. Its main features include a staggered

mesh system, a power-law formulation for the combined

effect of convection and diffusion terms, and central

difference scheme for source terms.

The discretization equations are solved for parame-

ter-dependence of velocity, pressure and temperature

fields by the Euler–Newton continuation method [29,36].



Table 2

Locations of S1
1 , S

2
1 , S

1
2 and B1: a comparison with those in [19]

S1
1 S2

1 S1
2 B1

Present work 129.55 112.82 187.91 128.22

[19] 131.13 113.35 190.77 129.71
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The solution branches are parameterized by Dk for the

regular portion of the branch, the arc-length or the

dimensionless radial velocity component u at r ¼ 0:9
and z ¼ 0:14 for turning limit points [29,36]. Here

r ¼ R=a, z ¼ Z=a (Fig. 1). The u at (0.9, 0.14) is selected

as the control parameter in turning limit points because

it varies significantly with Dk. The starting point of our

continuation algorithms is that of Dk ¼ 0. The bifurca-

tion points are detected by the test function in [29]. The

branch switching is made by a scheme approximating

the difference between branches proposed in [29]. The

linear stability and the dynamic response of multiple

steady solutions to the 2D finite random disturbances

are examined by the QR decomposition method and the

direct transient computation, respectively. The random

disturbance is generated by dðkÞvðkÞys. Here d is the

maximum percentage of disturbing value over the steady

value ys. The superscript k represents the ordinal of the

disturbance. v is a vector whose components take ran-

dom values from )1 to 1 and are generated by the

computer. The readers are referred to [34] for the

numerical details.

With the recognition that at a point in the parameter

space, several different solutions with quite different flow

structures can co-exist, a uniform grid that is fine en-

ough to resolve all the different flow structures appears

proper. A careful study of the grid dependence by using

different grid sizes shows that 50· 50 is a reasonably

accurate choice for the grid size [34]. To verify the code,

five representative properties obtained by the present

work is shown in Table 1 together with those in [31] at

Dk ¼ 100, r ¼ 0:02 and Pr ¼ 0:7, where there is only one
solution. They are Reynolds number defined by

Re ¼ Wma=m with Wm as the streamwise mean velocity,

Dean number (De ¼ Re
ffiffiffi
r

p
), maximum of absolute val-

ues of secondary flow stream function (jwjmax), maxi-

mum streamwise velocity (wmax) and maximum

temperature (hmax). The results are in good agreement,

with a very small difference (less than 2%) being due to

the different numerical methods used in two studies. We

also compared, in Table 2, the locations (in terms of

their De values) of three limit points S1
1 , S

2
1 , S

1
2 and one

bifurcation point B1 with those available in [19] (see next

section for the notation of limit points). The results of

the present analysis are also in good agreement with

those in [19]. The very small difference (less than 1.5%) is
Table 1

Comparison of five representative properties at Dk ¼ 100,

r ¼ 0:02, Pr ¼ 0:7 with those in [31]

Sources Re De jwjmax wmax hmax

Present work 541 76.5 5.528 0.0494 39.7

[31] 542 76.6 5.641 0.0496 39.9
believed to be due to the different numerical methods

used in two studies.

To further verify the code and accuracy, we re-ob-

tained the bifurcation structure by using a stream

function/vorticity version of governing equation and

50 · 50 uniform grid. The bifurcation structure by these

two methods were found to be in excellent agreement in

most of range (Dk6 700), and have very slightly quan-

titative difference when Dk > 700 [34].
3. Results and discussion

3.1. Solution structure

The bifurcation structure is shown in Fig. 2 for Dk
values from 0 up to 800 at r ¼ 0:02 and Pr ¼ 0:7. In Fig.

2, the u velocity at (0.9, 0.14) is used as the state variable,

enabling the most clear visualization of all solution

branches. Six solution branches, labeled by S1, S2, A1, A2,

A3 and A4 respectively, are found. Here, S stands for

symmetric solutions with respect to the horizontal cen-

tral plane z ¼ 0 and A for asymmetric solutions. Branch

A1 is bifurcated from S1 at the symmetry-breaking

bifurcation point B1. Branches A2, A3 and A4 are bifur-

cated from S2 at three symmetry-breaking bifurcation

points B2, B3 and B4, respectively. Table 3 lists Dk and

De values of four symmetry-breaking bifurcation points

B1–B4 and 15 limit points labeled by their branch symbol

with a superscript number. For example, S2
1 represents

the second limit point on the solution branch S1. To
visualize the details of branch connectivity and some

limit points, the locally enlarged state diagrams are also

shown in Fig. 2. As Fig. 2 is only 1D projection of N -

dimensional solution branches, all intersecting points

except four bifurcation points should not be interpreted

as connection points of branches. In terms of Dk, the
work in [19] is limited to the range up to about 400. It is

interesting to note that there are always odd number of

co-existing steady solutions at each Dk from 0 to 800.

Note also that each pair of singular points (B1, A1
1),

(B2, A1
2), (B3, A1

3) and (B4, A1
4) are very close. Two sin-

gular points in each pair get closer as the mesh size de-

creases. Their slight separation is thus an artifact of the

numerical discretization.

Among six solution branches, S1, S2 and A1 have been

first reported in [19]. We here reconfirm and extend their

findings up to Dk ¼ 800. While no new limit and bifur-



Table 3

Locations of all limit points and bifurcation points up to

Dk ¼ 800 at r ¼ 0:02 and Pr ¼ 0:7

Points Dk De

S1
1 191.27 129.55

S2
1 163.43 112.82

A1
1 188.67 127.51

A2
1 357.41 209.92

A3
1 355.72 209.25

A4
1 357.41 209.92

A5
1 355.72 209.25

S1
2 310.71 187.91

S2
2 643.30 325.83

S3
2 511.04 274.80

S4
2 732.43 350.41

S5
2 640.59 319.34

A1
2 641.87 324.89

A1
3 730.83 349.84

A1
4 648.16 322.27

B1 188.80 128.22

B2 642.51 325.14

B3 731.22 350.01

B4 648.18 322.27
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Fig. 2. Solution branches and their connectivity (r ¼ 0:02, Pr ¼ 0:7).
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cation points are found along S1 and A1, four additional

limit points S2
2–S

5
2 (first reported in [20]) and three new
symmetry-breaking bifurcation points B2, B3 and B4 are

detected along S2. In particular three symmetry-breaking

bifurcation points B2, B3 and B4 lead to three pairs of

asymmetric solution branches A2, A3 and A4.

The primary branch S1 is a symmetric solution

branch. It has two limit points S1
1 and S2

1 . The two limit

points divide the branch into three parts S1-1, S1-2 and

S1-3, and generate a range (163:43 < Dk < 191:27) where
three steady solutions co-exist for a fixed value of Dk.
The secondary flows for these three sub-branches are the

two-cell state (two Ekman vortices, Fig. 3(a)), the weak

four-cell state with two Ekman vortices and two weak

Dean vortices (Fig. 3(b)), and the four-cell state with

two Ekman vortices and two Dean vortices (Fig. 3(c)),

respectively. In the figure, the stream function is nor-

malized by its maximum absolute values jwjmax. A vortex

with a positive (negative) value of the secondary flow

stream function indicates a counter-clockwise (clock-

wise) circulation. The readers are referred to [31] for a

detailed discussion of two-cell and four-cell flow struc-

tures in general, their relations with physical mecha-

nisms and driving forces and their effects on the flow

resistance and heat transfer in particular.

In addition to the two limit points S1
1 and S2

1 , the

primary branch S1 also has a symmetry-breaking bifur-

cation point B1 at Dk¼: 188:8 (De¼: 128:22), originating an



Fig. 3. Typical secondary flows on various solution sub-branches.
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asymmetric solution branch A1. A1 has five limit points

A1
1–A

5
1. The limit point A1

1 divides the branch into upper

sub-branch A1-1 and lower sub-branch A1-2. The solu-

tions on A1-2 can be formed by mirror images of corre-

sponding solutions on A1-1 at the same Dk. While the

sub-branch A1-1 contributes, through the two limit points

A2
1 and A3

1, three solutions for any value of Dk in a very

small range 355:72 < Dk < 357:41, the difference among

these three solutions is negligibly small. Flows on A1-1

are essentially an asymmetric two-cell state as shown in

Fig. 3(d) for Dk ¼ 450.

The solution branch S2 is an isolated symmetric

branch. It is divided into six sub-branches S2-1–S2-6 by
five limit points S1
2–S

5
2 . To illustrate the flow structure

and its evolution on each sub-branches, Fig. 3(e)–(j)

show some typical secondary flow patterns of this

branch at Dk ¼ 550 and 700. The flow on S2-1 is a four-

cell state (Fig. 3(e)). However, this four-cell structure

differs from the one on S1-3 (Fig. 3(c)) mainly on the

shape and size of Dean vortices. Two Dean vortices here

stretch along span direction rather than the radial

direction. The spanwise distance between centers of two

Dean vortices is noticeably larger than that of the four-

cell flow on S1-3. The flow on S2-2 is a two-cell state (Fig.

3(f)), which is qualitatively similar to that on S1-1, but
with a stronger secondary flow. The flow on S2-3 is a
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weak four-cell state with a pair of very weak Dean

vortices (Fig. 3(g)).

The limit point S3
2 leads the weakly four-cell flow on

S2-3 to a six-cell state on S2-4 with two pairs of Dean

vortices along the outer wall (Fig. 3(h)). The second pair

appears because of the splitting of the original pair. It

could be interesting to study, in the future, the relation

between this vortex splitting and the one due to the

Eckhaus instability [37]. The secondary flow on this sub-

branch evolves to a stronger one through the growth of

second pair of Dean vortices as Dk increases. Flows on

S2-5 and S2-6 are a eight-cell state with three pairs of Dean

vortices (Fig. 3(i) and (j)). The third pair is formed from

the outer wall. This differs from the mechanism

responsible for the appearance of the second pair. As

usual, the secondary flows on S2-5 and S2-6 becomes

stronger as Dk increases. For the same value of Dk, the
eight-cell structure on S2-6, the third pair of Dean vor-

tices in particular, is stronger in strength than that on

S2-5.
In addition to the five limit points, the solution

branch S2 has also three symmetry-breaking bifurcation

points B2, B3 and B4, originating three asymmetric

solution branches A2, A3 and A4, respectively. Each of

these branches has one limit point dividing the branch

into a upper sub-branch (A2-1, A3-1 or A4-1) and a lower

sub-branch (A2-2, A3-2 or A4-2). Solutions on the lower

sub-branches are the mirror images of the corresponding

solutions on the upper sub-branches at the same Dk. Fig.
3(k)–(m) detail secondary flow structures on these three

branches. The flow on the A2-1 is an asymmetric two-cell

state (Fig. 3(k), qualitatively similar to that on A1-1)

while it is an asymmetric seven-cell structure on both

A3-1 and A4-1 (Fig. 3(l) and (m)).

3.2. Stability of multiple solutions

Recognizing that there is no study on dynamic re-

sponses of multiple solutions to finite random distur-

bances in the literature, a relatively comprehensive

transient computation is made to examine the dynamic

behavior and stability of 56 typical steady solutions with

respect to three sets of finite random disturbances with

d ¼ 4%, 10%, and 15% respectively. Here d is the max-

imum percentage of disturbing value over the initial

steady value. It is found that the final dynamic evolution

after a short transient temporal period is independent of

the initial disturbances for all solutions in the region

06Dk6 650. The results presented in this paper are

those obtained from the disturbance with d ¼ 10% un-

less otherwise stated. At any fixed value of Dk in the

range 06Dk6 620, all steady solutions develop, after

initial finite random disturbances, to the same final state.

There is no co-existence of two or more stable states in

this range within the scope of the present study. The

stability of solutions on the sub-branch S2-2 changes as
Dk changes even without passing any bifurcation or

limit point. In particular, the sub-branch is unstable in

the range 310:716Dk6 375, stable in the range 375 <
Dk6 620 and unstable again in the range 620 <
Dk6 643:3.

Five sub-ranges are identified with each having dis-

tinct dynamic responses to the finite random distur-

bances (Fig. 2). The first is from Dk ¼ 0 to Dk ¼ 191:27
(S1

1 ), where the finite random disturbances lead all steady

solutions at any fixed Dk to a two-cell steady state on

S1-1 with the same Dk. The second covers the range

191:27 < Dk6 375 where all steady solutions evolve to a

temporal periodic solution. In the third sub-range

375 < Dk6 620, the finite random disturbances lead all

solutions to a two-cell steady state on S2-2 with the same

Dk. The fourth sub-range ranges from Dk ¼ 620 to

Dk ¼ 650 where the solutions response to the finite

random disturbances in the form of temporal oscillation

with intermittency, a forecasting signal of chaotic flows.

In the last sub-range Dk > 650, any finite random dis-

turbance will deviate the solutions to a chaotic oscilla-

tion.

3.2.1. 06Dk6 191:27

Winters [19] found that the Jacobian determinant is

negative on S1-3 and the part of S1-2 between B1 and S1
1 ,

and positive on S1-1 and the part of S1-2 between S2
1 and

B1. The conclusion drawn from Winters [19] is thus that

the solutions on S1-3 and the part of S1-2 between B1 and

S1
1 are unstable, but the solutions on S1-1 and the part of

S1-2 between S2
1 and B1 might stable. Our linear stability

analysis confirms his founding of the linear instability of

S1-3 and the part of S1-2 between B1 and S1
1 . Furthermore,

our linear stability analysis, which is capable to ascertain

the linear stability conclusively by finding all eigen-

values, shows that the solution on S1-1 is linearly stable,

but the solution on the part of S1-2 between S2
1 and B1 is

linearly unstable.

Fig. 4(a) typifies the responses of solutions on S1-1 to
the finite random disturbances. In the figure, the devia-

tion of velocity components from their initial steady

values is plotted against the time s at (0.9, 0.14), (0.94,

0.1) and (0.96, 0.06) for Dk ¼ 180. We plot both radial

(u-) and spanwise (v-) velocity components for the first

point (0.9, 0.14) while only u-velocity component is

shown for the last two points. To facilitate the com-

parison, we use these four velocity components (either

velocity itself or derivation velocity from its initial

steady value) in all figures illustrating dynamic responses

of multiple solutions to the finite random disturbances.

It is observed that all deviation velocities vanish after a

short period of time. The flows and temperature profiles

return to their initial steady ones shown in Fig. 3(a).

Therefore, the solutions on S1-1 are also stable with re-

spect to the finite random disturbances in addition to

their linear stability.
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Fig. 4(b) illustrates the typical response of solutions

on S1-3 to the finite random disturbances. It shows that

the finite random disturbances lead eventually the

solutions on this unstable sub-branch to the stable one

on S1-1 at the same Dk. This is further be confirmed by

our detailed check of flow and temperature fields and is

also true for the solutions on S1-2. Therefore, the solu-

tions on S1-2 and S1-3 are unstable to the finite random

disturbances and response the disturbances by evolving

to the stable solution on S1-1 at the same Dk.

3.2.2. 191:27 < Dk6 375

Winters [19] found that the Jacobian determinant is

positive on A1. Therefore, the linear stability of this

branch is not conclusive. Our linear stability analysis

shows that this branch is linearly unstable. The linear

stability of S1-3 and S2-1 examined in [19] is reconfirmed

to be unstable in this range by our linear stability

analysis. In contract to [19], however, we found that S2-2
is linearly unstable in this range.

The dynamic response of the solution at Dk ¼ 300 on

A1-1 is shown in Fig. 5(a). The finite random distur-
bances here lead the solution to a temporal periodic

state with a period of 0.159. Some typical secondary flow

patterns are detailed in Fig. 5(b) within one period of

dimensionless time s. We clearly observe the temporal

oscillations between symmetric/asymmetric two-cell

flows and symmetric/asymmetric four-cell flows, a phe-

nomenon observed experimentally in [22,23,26,27]. A

detailed study by the dynamic responses of solutions on

other branches at Dk ¼ 300 and the comparison of flow

and temperature fields within one period show that the

finite random disturbances lead all the solutions at the

same Dk to the same periodic oscillation.

A similar dynamic evolution pattern exists for all

cases with different values of Dk. This signals the simi-

larity of flow and temperature fields within one period

among the periodic states at different values of Dk in the

range 191:27 < Dk6 375. Our detailed examination of

flow and temperature fields has confirmed this, and

shown that the flow structures in Fig. 5(b) are typical for

all Dk.
The variation of the period with Dk is shown in Fig.

5(c). It is observed that the period first increases with Dk,



Fig. 5. Response to finite random disturbances in form of periodic oscillation in 191:23 < Dk6 375. (a) Dynamic response of the

solution at Dk ¼ 300 on A1-1 to finite random disturbances: periodic oscillation (period¼ 0.159). (b) Typical secondary flow patterns in

one period of temporal periodic oscillation from the solution at Dk ¼ 300 on A1-1. (c) Variation of period with Dk.
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and then decreases. But, it increases once again slightly

around Dk ¼ 362 and then decreases as Dk increases.

There is no period-doubling bifurcation. Here, the

temporal periodic oscillation serves as the transition

from one stable steady flow in 06Dk6 191:27 to an-

other in 375 < Dk6 620 as discussed in the next section.

The dynamic responses of solutions on A1 in this

range tend to show that B1 is a sub-critical Hopf bifur-

cation point.

3.2.3. 375 < Dk6 620

In this range, our linear stability analysis shows that

S2-1 is linearly unstable, but S2-2 is linearly stable. It is of

special interest that the linear stability of S2-2 changes

from unstable in the last range to stable in this range.

Daskopoulos and Lenhoff [20] found that S2-4 is linearly
stable to symmetric disturbances. However, our linear

stability analysis shows that it is linearly unstable to the

asymmetric disturbances.

The two-cell state on S2-2 is not only linearly stable

but also stable to the finite random disturbances in this

sub-range. This can be referred by the typical response
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Fig. 6. Dynamic responses of solutions to finite random disturbances:

S2-2, (b) Dk ¼ 550 on S2-1.
of the solution at Dk ¼ 610 on this sub-branch to the

disturbances in Fig. 6(a). Another striking feature can be

obtained by comparing the dynamic process in Fig. 6(a)

with that in Fig. 4. The transient solutions approach

their stable steady states asymptotically for S1-1, but in
oscillation for S2-2. The oscillation in Fig. 6(a) may be

reviewed as the over-damped oscillation with the

damping effect being weaker at higher Dk, and thus a

longer oscillating time. This difference is in agreement

with findings of our linear stability analysis: the eigen-

values with maximum real part are real-valued for S1-1,
but complex-valued for S2-2.

In this sub-range of the parameter space, the finite

random disturbances will lead all the other solutions to

the two-cell steady state on S2-2 at the same Dk. Fig. 6(b)
typifies this process by the dynamic response of the

solution at Dk ¼ 550 on S2-1 to the disturbances.

3.2.4. 620 < Dk6 650

In this sub-range, all solution branches are linearly

unstable. The S2-2, in particular, loses its linear stability

gained in the last sub-range. While three sets of finite
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evolution to stable steady two-cell state on S2-2. (a) Dk ¼ 610 on
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random disturbances lead each solution to the same final

temporal oscillation state, the solutions at different

solution branches at the same Dk respond the distur-

bances differently in the sense that the final oscillation is

different. However, for a fixed value of Dk, all the

oscillation are around the steady solutions on S2-2 before
Dk ¼ 643:30 (point S2

2 ) and around the steady solutions

on A2 after Dk ¼ 643:30. Whether A2-1 or A2-2 is difficult

to distinguish because they are very close. Therefore, S2-2
and A2 differ from the other solution branches in this

aspect.

Fig. 7 details the dynamic responses to the distur-

bances of the solutions at Dk ¼ 630 on S2-1 (Fig. 7(a)),

and at Dk ¼ 638 on S2-2 (Fig. 7(b)), respectively. It is

observed that there exists intermittent aperiodic bursts

in the oscillation, one of routes to chaos [29,38,39]. The

oscillation is quasi-periodic between two bursts with

the periodicity being degraded as Dk increases. The

appearance frequency of bursts increases as Dk in-

creases.

Fig. 8 details the secondary flow during quasi-peri-

odic oscillations (Fig. 8(a), (e), (f)) and bursts (Fig. 8(b)–

(d)) for the case shown in Fig. 7(a). It is observed that

the flow oscillates among symmetric/asymmetric two-

cell patterns during quasi-periodic oscillations but
Fig. 7. Dynamic responses of solutions to finite random disturbanc
among symmetric/asymmetric four-cell structures dur-

ing bursts.

3.2.5. 650 < Dk6 800

In this sub-range, all solution branches are also lin-

early unstable. Fig. 9(a) shows the dynamic response of

the solution at Dk ¼ 800 on A3-1 to the finite random

disturbance with d ¼ 10%. The bursts are still observed,

but, with a high appearance frequency and a generally

small amplitude. The oscillation between two bursts,

however, cannot be reviewed as quasi-periodic any

more. The power spectra of four velocity temporal series

in Fig. 9(a) are constructed by the Fourier transforma-

tion and shown in Fig. 9(b). They contain the broad-

band noise, indicating the flow being chaotic [29]. The

sensitivity to the initial conditions serves as another

criterion of chaos [40]. Fig. 9(c) shows the dynamic re-

sponse of the solution to the disturbance with d ¼ 15%.

The oscillation in Fig. 9(c) is observed to be different

with that in Fig. 9(a). This further confirms that the

oscillation in Fig. 9(a) is chaotic. Fig. 9(d) details some

typical secondary flow patterns for the temporal chaotic

flow shown in Fig. 9(a). It is observed that the flow

oscillates among four-cell patterns during bursts ((iii)

and (iv) in Fig. 9(d)) but among two-cell and three-cell
es: intermittency. (a) Dk ¼ 630 on S2-1, (b) Dk ¼ 638 on S2-2.



Fig. 8. Typical secondary flow patterns of intermittent flow from solution at Dk ¼ 630 on S2-1.

2984 L. Wang, T. Yang / International Journal of Heat and Mass Transfer 47 (2004) 2971–2987
structures during the other period ((i) and (ii) in Fig.

9(d)).

In spite of their chaotic feature, all oscillations from

different solution branches and different disturbances at

the same Dk appear around a common equilibrium state,

the steady solution on A2. As A2-1 and A2-2 are very close,

it is difficult to distinguish whether it is A2-1 or A2-2. Fig.

10 shows dynamic responses of three solutions at

Dk ¼ 700 on different solution branches to the distur-

bances. It is observed that all u’s evolve into A2 at

Dk ¼ 700 in a short time period and then oscillate cha-

otically around it. This has also been confirmed by our

detail check of flow patterns and temperature profiles.

Therefore, the solution branch A2 differs from the others

in its stability.

The transition from the intermittent oscillation to the

chaotic oscillation is believed to be a smooth process

characterized by the increase of appearance frequency

and the decrease of the amplitude of bursts as the in-

crease of Dk. As the solution at Dk ¼ 660 on A4-1 re-

sponses to the disturbance also in the form of chaotic

oscillation, it is not unreasonable to conjecture that the

transition takes place gradually within Dk ¼ 650–660.
4. Concluding remarks

The governing differential equations from the con-

servation laws are discretized by the finite volume

method to obtain discretization equations. The discret-

ization equations are solved for parameter-dependence

of flow and temperature fields by the Euler–Newton

continuation with the solution branches parameterized
by the pseudo-Dean number Dk, the arc-length or the

local variable. The bifurcation points are detected by the

test function. The Hopf bifurcation point is determined

by the transient computation. The branch switching is

made by a scheme approximating the difference between

branches proposed in [29]. Two symmetric and four

asymmetric solution branches are found. Among them,

three new asymmetric branches are with either two-cell

or seven-cell flow structure. They arise from three new

symmetry-breaking bifurcation points on the symmetric

branch S2. The bifurcation point B1 is found to be a sub-

critical Hopf point.

The linear stability of multiple solutions is made by

solving the eigenvalue system for all eigenvalues. This

can lead to a conclusive result regarding the linear sta-

bility of solutions. S1-1 (06Dk6 191:27) and the part of

S2-2 between Dk ¼ 375 and Dk ¼ 620 are linearly stable.

Both are with a two-cell flow structure. All the other

sub-branches and branches are linearly unstable. In

particular, S2-4 is linearly unstable to the asymmetric

disturbances although it is stable to the symmetric dis-

turbances. S2-2 can gain and lose its linear stability

without passing any bifurcation or limit points as Dk
changes.

The dynamic responses of multiple solutions to the

2D finite random disturbances are examined by the di-

rect transient computation. The solutions are found to

respond three sets of finite random disturbances in the

same manner in the range with Dk6 650. At any fixed

value of Dk in the range 06Dk6 620, all steady solu-

tions develop, after the initial finite random distur-

bances, to the same final state. The finite random

disturbances are found to lead the steady solutions to a



Fig. 9. Dynamic response of the solution at Dk ¼ 800 on A3-1 to finite random disturbances: chaotic oscillation. (a) Dynamic response

to the finite random disturbance with d ¼ 10%. (b) Power spectrum of the chaotic oscillation in (a). (c) Dynamic response to the finite

random disturbance with d ¼ 15%. (d) Typical secondary flow patterns of chaotic flow from the solution at Dk ¼ 800 on A3-1.
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Fig. 10. Dynamic responses of u at (0.9, 0.14) to finite random disturbances for three solutions at Dk ¼ 700.
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stable steady two-cell state on S1-1 in 06Dk6 191:27, a
temporal periodic oscillation between symmetric/asym-

metric two-cell flows and symmetric/asymmetric four-

cell flows in 191:27 < Dk6 375, another stable steady

two-cell state on S2-2 in 375 < Dk6 620, an intermittent

oscillation in 620 < Dk6 650, and a chaotic oscillation

in 650 < Dk6 800. The intermittent flow is character-

ized by the flow oscillation among the symmetric/

asymmetric two-cell patterns during the period between

two bursts and among the symmetric/asymmetric four-

cell structures during the burst. The chaotic flow is, on

the other hand, featured by the flow oscillation among

the four-cell patterns during the burst, and the two-cell

and three-cell structures during the other period.
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